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Abstract: We study the existence of tangent lines, i.e. subsets of the tangent space isometric to the real line,
in tangent spaces of metric spaces. We �rst revisit the almost everywhere metric di�erentiability of Lipschitz
continuous curves. We then show that any blow-up done at a point of metric di�erentiability and of density
one for the domain of the curve gives a tangent line.
Metric di�erentiability enjoys a Borelmeasurability property and thiswill permit us to use it in the framework
of Lipschitz di�erentiability spaces.We show that any tangent space of a Lipschitz di�erentiability space con-
tains at least n distinct tangent lines, obtained as the blow-up of n Lipschitz curves, where n is the dimension
of the local measurable chart. Under additional assumptions on the space, such as curvature lower bounds,
these n distinct tangent lines span an n-dimensional part of the tangent space.
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1 Introduction
During the past few years there has been growing interest towards studying the in�nitesimal structure of
“nice” metric measure spaces. One class of nice metric measure spaces is formed by the ones in which Lips-
chitz functions are di�erentiable almost everywhere with respect to Lipschitz charts covering the space. The
study of such spaces originates from the work of Cheeger [10] and the spaces are now often called Lipschitz
di�erentiability spaces (following Bate [7]). Cheeger proved that a doubling condition on the reference mea-
sure and the validity of a local Poincaré inequality (as de�ned by Heinonen and Koskela [13]) are su�cient
for the space to be a Lipschitz di�erentiability space. Although there are quite wild examples of doubling
metric measure spaces supporting a local Poincaré inequality [9, 24, 36], these assumptions still have strong
geometric implications, [10, 22, 37]. In particular, there are lots of recti�able curves joining any two points in
such a space.

A general Lipschitz di�erentiability space might not contain any recti�able curve besides the trivial one.
However, they always contain su�ciently many broken curves in di�erent directions so that the reference
measure can be expressed by independent Alberti representations that completely characterize derivatives
of Lipschitz functions, see the work of Bate [7]. On the other hand, when we perform a Gromov-Hausdor�
blow-up of a broken bi-Lipschitz curve γ : Dom (γ)→ X of themetric space X at a density point of the domain
Dom (γ) the broken curve approaches, after passing to a subsequence, a limit curve de�ned on the whole R.

We �rst de�nemetric di�erentiability, see De�nition 3.3, and then prove that, at points of metric di�eren-
tiability, this limit curve is a line-segment, see Proposition 3.10. By a result of Kirchheim [21], we observe that
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metric derivative coincides with the metric speed at almost every point of Dom (γ). Therefore we deduce that
a Lipschitz curve γ is metrically di�erentiable at almost every point (see also Proposition 3.8 for an alternative
proof of this fact). Thus broken bi-Lipschitz curves always converge to a line-segment at almost every point
of their domain.

Given an n-dimensional Lipschitz chart on a Lipschitz di�erentiability space we know from the work of
Bate [7] that there exist n independent Alberti representations. Using the measurability of the metric di�er-
ential, Lemma 4.1, one can deduce that (see Proposition 4.3) at almost every point the blow-up will give n
distinct tangent lines. If one also assumes the Lipschitz di�erentiability space to be doubling, then one can
�nd n distinct tangent lines at every point of the tangent space. Note that Tan(X, d, x̄) will denote the collec-
tion of all the tangent cones obtained by blow-up of the space (X, d) at the point x̄.

Theorem 1.1 (Theorem 4.5). Let (X, d,m) be a doubling Lipschitz di�erentiability space and (U, φ) be an n-
dimensional chart. Then for m-almost every x̄ ∈ U, there exist v1, . . . , vn ∈ Rn linearly independent such that
for any element (X∞, d∞, x̄∞) ∈ Tan(X, d, x̄) and for each z ∈ X∞ there exist ιz1, . . . , ιzn : R→ X∞ so that

i) ιzj (0) = z, for any j = 1, . . . , n;

ii) d∞(ιzj (t), ιzj (s)) = |t − s|, for any j = 1, . . . , n, for all s, t ∈ R;

iii) d∞(ιzj (t), ιzk(t)) ≥ C|t| · |vj − vk|, for any j, k = 1, . . . , n, for all t ∈ R;

for some positive constant C = C(z). For each z ∈ X∞, each line ιzi is obtained as the blow-up of a Lipschitz
curve, with the blow-up depending on z.

The question is then how and what kind of subspace of the tangent space these tangent lines form. Since
the Heisenberg group is a Lipschitz di�erentiability space and purely 2-unrecti�able [4], we know that the
tangent lines do not always span an n-recti�able set. However under the additional assumption that the
space is Ahlfors n-regular with n being the dimension of the chart, at almost every point there is a tangent
space bi-Lipschitz equivalent toRn, see [12]. We are interested in �nding other conditions that would provide
information on the tangents.

Our considerations originate from the study of another class of nice metric measure spaces - namely of
those with Ricci curvature lower bounds. There are many notions of Ricci curvature lower bounds on metric
measure spaces. For the most strict one, the RCD*(K, N) spaces (de�ned in [1, 3, 5, 14]), it is known that they
in�nitesimally look like Euclidean spaces, [16, 27]. Moreover, the tangents in an RCD*(K, N) space are almost
everywhere spanned by the tangent lines obtained from the Lipschitz charts as described above, see Section
5 for details. Thus the in�nitesimal structure of RCD*(K, N) spaces is already well understood.

We would like to understand the structure of spaces with Ricci curvature lower bounds with the more
general de�nitions. Most of the de�nitions are known to imply a doubling condition on the measure and a
local Poincaré inequality. Thus these spaces are Lipschitz di�erentiability spaces and Theorem 1.1 holds. One
line of investigation is to continue from the proof in [16]. There the fact that RCD*(K, N) spaces have at least
one Euclidean tangent space was proven following the idea of Preiss [30] (and its adaptation tometric spaces
by Le Donne [25]) of iterated tangents. The proof essentially used only the fact that the tangent spaces split
o� any part that is isometric to R.

Taking into consideration also the Lipschitz charts, the splitting of tangents property (de�ned in Section
5) implies the existence of Rn in each of the tangents at almost every point, where n is again the dimension
of the chart.
Theorem 1.2 (Theorem 5.1). Suppose that (X, d,m) is a doubling Lipschitz di�erentiability space with the
splitting of tangents property. Let (U, φ) be an n-dimensional chart of (X, d,m). Then for m-a.e. x̄ ∈ U any
(X∞, d∞, x̄∞) ∈ Tan(X, d, x̄) is of the form

(Xd∞ ×Rd , dd∞ × | · |,(x̄d∞, 0)),

with d ≥ n.
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For themore general CD(K, N) spaces (see [26, 38, 39] for the de�nitions) isometric splitting of tangents is
impossible since already Rn with any norm and the Lebesgue measure satis�es CD(0, n). On the other hand,
Ohta has recently shown that a version of splitting theorem holds for Finsler manifolds [29]. Such weaker
versions might be enough to give some information on the in�nitesimal structure. For example, if the exis-
tence of a tangent line would always imply that the tangent could be written to be bi-Lipschitz equivalent to a
productR×Y for somemetric space Y, the n dimensional Lipschitz chart could result in a piece of the tangent
bi-Lipschitz equivalent to Rn.

Let us note that for the even more general notionMCP(K, N) of Ricci curvature lower bound (see [28, 39]
for the de�nitions) the above splitting result does not hold even in a topological sense [20]. Moreover, it is not
known if a local Poincaré inequality holds inMCP(K, N) spaces without the non-branching assumption, and
hence we do not know ifMCP(K, N) spaces are Lipschitz di�erentiability spaces. Even more, it is known that
for example the Heisenberg group satis�es theMCP(K, N) condition, see [18]. Thus the tangent lines cannot
bi-Lipschitz span a part of the tangent.

The paper is organized as follows. In Section 2 we recall the notions of pointed measured Gromov-
Hausdor� convergence, tangent functions and Lipschitz di�erentiability spaces. In Section 3 we de�ne the
notion of metric di�erentiability that we will use in this paper and show, using an identity proved by Kirch-
heim in [21], that the metric derivative agrees almost everywhere with the metric speed. We also show that
at almost every point of a bi-Lipschitz curve the blow-up will be a tangent line. In Section 4 we consider the
blow-ups in a Lipschitz di�erentiability space showing that we have n independent tangent lines at almost
every point. In the �nal section, Section 5, following the ideas of David and Schioppa [12, 34], we prove that
if tangents split o� tangent lines then the n independent tangent lines in a Lipschitz di�erentiability space
span a Euclidean Rn in the tangent.

2 Preliminaries
A metric measure space is a triple (X, d,m) where (X, d) is a complete and separable metric space and m a
positive Borel measure that is also �nite on bounded sets. As the main object of our study will be proper
spaces, i.e. metric spaces such that each bounded closed set is also compact, we directly incorporate in the
de�nition of metric measure space also the properness assumption. Consequentlymwill be a positive Radon
measure.

We list here two general properties of metric measure spaces that we will consider during the paper. The
metric measure space (X, d,m) is (uniformly locally) doubling if for each R > 0 there exists C(R) > 0 such that

0 < m(B2r(x)) ≤ C(R)m(Br(x)), for every x ∈ X, r ≤ R.

With no loss in generality, the function C can be taken non-decreasing. Moreover a metric measure space
(X, d,m) supports a local p-Poincaré inequality for some p ≥ 1 if every ball in X has positive and �nitemeasure
and for every g ∈ Lip(X, d) := {l : X → R| l is Lipschitz},

 
B
|g(x) − gB| dm(x) ≤ Lr

( 
BrL(x0)

|Dg|p(x) dm(x)
)1/p

,

for some positive constant L, where B = Br(x0) and gB =
ffl
B g(x) dm(x). Here for g ∈ Lip(X, d) we also adopt

the following notation:
|Dg|(x) := lim sup

y→x,
y= ̸x

d(g(y), g(x))
d(y, x) .
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2.1 Convergence of metric measure spaces

The standard notion of topology on equivalence classes of pointed, proper, separablemetric spaces is the one
induced by the pointed Gromov-Hausdor� convergence, pGH-convergence in brief. This convergence can be
characterized in many equivalent ways. We will adopt the one with ε-isometries.

A map f : (X, dX)→ (Y , dY ) between compact metric spaces is called an ε-isometry provided
(i) it almost preserves distances: for all z, w ∈ X,

|dX(z, w) − dY (f (z), f (w))| ≤ ε;

(ii) it is almost surjective:
∀ y ∈ Y , ∃ x ∈ X : dY (f (x), y) ≤ ε.

In order to deal with possibly non-compact spaces, it is customary to �x a distinguished point x̄ ∈ X and to
consider ε-isometries de�ned on an increasing family of balls centered in x̄. When a distinguished point is
�xed, we use (X, d, x̄) to denote the pointed metric space.

De�nition 2.1. A sequence {(Xi , di , x̄i)}i∈N of pointed, proper, complete metric spaces converges to a
pointed, proper, complete metric space (X∞, d∞, x̄∞) in pointed Gromov-Hausdor�, and write

(Xi , di , x̄i) −→ (X∞, d∞, x̄∞), pGH,

if and only if there exist sequences of positive real numbers {εi}i∈N, {Ri}i∈N with εi → 0, Ri → ∞ and a
sequence of εi-isometries,

fi : BXiRi (x̄i) −→ BX∞Ri (x̄∞), fi(x̄i) = x̄∞,

where BXiRi (x̄i) is the ball in Xi, centered in x̄ and of radius Ri.

We also consider pointed metric measure spaces: a quadruple (X, d,m, x̄) where (X, d,m) is a metric
measure space and x̄ ∈ X a distinguished point.

De�nition 2.2. A sequence {(Xi , di ,mi , x̄i)}i∈N of pointed metric measure spaces converges in the pointed
measured Gromov-Hausdor� sense to a pointed metric measure space (X∞, d∞,m∞, x̄∞)

(Xi , di ,mi , x̄i) −→ (X∞, d∞,m∞, x̄∞), pmGH,

if and only if there exist sequences of positive real numbers {εi}i∈N, {Ri}i∈N with εi → 0, Ri → ∞ and a
sequence of εi-isometries,

fi : BXiRi (x̄i) −→ BX∞Ri (x̄∞), fi(x̄i) = x̄∞,

such that
lim
i→∞

ˆ
X∞
φ(z) d(fi ]mi)(z) =

ˆ
X∞
φ(z) dm∞(z), ∀φ ∈ Cb(X∞),

where Cb(X∞) stands for the space of continuous and bounded functions with compact support in X∞.

Both, the pGH-convergence and the pmGH-convergence can be used to de�ne and study (measured)
tangent spaces.

If (X, d) is ametric space and x̄ ∈ X is a distinguished point, then any limit point in the pGH-convergence
of any sequence of the form {(X, d/ri , x̄)}i∈N, with ri → 0, is a tangent space of (X, d) at x̄. We use Tan(X, d, x̄)
to denote the set of all possible tangent spaces of (X, d) at x̄.

If (X, d,m) is ametric measure space and x̄ ∈ supp(m) is a distinguished point, for any r > 0, the rescaled
and normalized pointed metric measure space is de�ned as follows:(

X, 1
r d,m

x̄
r , x̄
)
, mx̄

r :=
(ˆ

Br(x̄)
1 − 1

r d(x̄, z) dm(z)
)−1

m.
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Then a limit point in the pmGH-convergence of the sequence {(X, d/ri ,mx̄
ri , x̄)}i∈N is a measured tangent

space of (X, d,m) at x̄ and to denote the set of all possible measured tangent spaces of (X, d,m) at x̄ we use
Tan(X, d,m, x̄).

It is worth noticing that, thanks to compactness properties of the collection of uniformly doublingmetric
measure spaces (see [40], Theorem 27.32 and [17], Lemma 3.32), Tan(X, d,m, x̄) is always non empty, provided
(X, d,m) is doubling.

2.2 Tangent functions

Here we recall a few objects and related results presented in [10] and in [19].
If (X, dX) and (Y , dY ) are metric spaces and f : X → Y is an ε-isometry, then there exists a (4ε)-isometry

f ′ : Y → X so that for all x ∈ X and y ∈ Y it holds

dX(f ′ ◦ f (x), x) ≤ 3ε, dY (f ◦ f ′(y), y) ≤ ε.

Such a map is usually called an ε-inverse of f and accordingly we will often adopt the notation f −1 to denote
it.

Consider now any element (X∞, d∞,m∞, x̄∞) ∈ Tan(X, d,m, x̄) and a sequence of ri → 0 such that(
X, 1
ri
d,mx̄

r , x̄
)
−→ (X∞, d∞,m∞, x̄∞), pmGH.

Then to any Lipschitz function g : X → R we can associate a sequence of rescaled functions centered at x̄:

gi(x) := g(x) − g(x̄)
ri

.

If g is L-Lipschitz in (X, d), then so is gi in (X, d/ri).With this inmind,we say that ug : X∞ → R is a compatible
tangent function of g at x̄ if

lim
i→∞

gi(f −1
i (z)) = lim

i→∞

g(f −1
i (z)) − g(x̄)

ri
= ug(z), ∀ z ∈ X∞,

where f −1
i is any εi-inverse of the approximate isometry fi given by the pmGH convergence of (X, d/ri ,mx̄

r , x̄)
to (X∞, d∞,m∞, x̄∞). The term compatible is used to underline that we used the same scaling for the distance
and the function g.

Remark 2.3. The de�nition of ug does not depend on the choice of the sequence of the εi-inverses. Since fi
is almost surjective, for any z ∈ X∞ and i ∈ N su�ciently large, there exists xi ∈ X such that

d∞(fi(xi), z) ≤ εi .

One then easily observes that |gi(f −1
i (z)) − gi(f −1

i ◦ fi(xi))| → 0. If f −1
i and f̂ −1

i are two distinct εi-inverses of fi,
it follows, by the triangle inequality that

lim
i→∞

1
ri
d(f −1

i ◦ fi(xi), f̂ −1
i ◦ fi(xi)) = 0,

and since g is Lipschitz, it follows that gi(f −1
i (z)) and gi(f̂ −1

i (z)) have the same limit.

Concerning the existence of compatible tangent functions, the following compactness result holds.

Lemma 2.4. Let (X, d,m) be a doubling metric measure space and a sequence ri → 0 such that(
X, 1
ri
d,mx̄

r , x̄
)
−→ (X∞, d∞,m∞, x̄∞) ∈ Tan(X, d,m, x̄),

where the convergence is in the pmGH sense. Fix also a countable collection F of uniformly Lipschitz functions
de�ned on X. Then possibly choosing a subsequence of {ri}i∈N, for each g ∈ F there exists ug a compatible
tangent function of g at x̄.
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The proof of Lemma 2.4 follows from a standard use of Ascoli-Arzela Theorem. See [23] for details. As one
might expect, tangent functions of Lipschitz functions enjoy a generalized notion of linearity. It has di�erent
names according to di�erent authors. Here we follow [10] and say that tangent functions to Lipschitz func-
tions, wherever they exists, are generalized linear, see De�nition 8.1 of [10]. The terminology used is justi�ed
by the fact that being generalized linear on a Euclidean space is the same as being linear in the usual sense,
see again [10], Theorem 8.11.

2.3 Lipschitz di�erentiability spaces

Under fairly general assumptions on the structure of the metric measure space, it is proved in [10] that the
space of germs of Lipschitz functions has �nite dimension in the following sense.

De�nition 2.5. Let (X, d) be ametric space and n ∈ N. A Borel set U ⊂ X and a Lipschitz function φ : X → Rn

form a chart of dimension n, (U, φ), and a function g : X → R is di�erentiable at x0 ∈ U with respect to (U, φ)
if there exists a unique Dg(x0) ∈ Rn such that

lim sup
x→x0

|g(x) − g(x0) − Dg(x0) · (φ(x) − φ(x0))|
d(x, x0) = 0.

Furthermore ametricmeasure space (X, d,m) is called a Lipschitz di�erentiability space if there exists a count-
able decomposition of X into charts such that any Lipschitz function g : X → R is di�erentiable at m-almost
every point of every chart.

A celebrated result by Cheeger [10] on Lipschitz di�erentiability spaces can be summarized by the fol-
lowing

Theorem 2.6. Let (X, d,m) be a doubling metric measure space supporting a p-Poincaré inequality with con-
stant L ≥ 1 for some p ≥ 1. Then (X, d,m) is a Lipschitz di�erentiability space.

Subsequently in [7] a �ner analysis on curves, and their possible directions with respect to a given chart,
was carried out. Here we report only the main statement. We use Γ(X) to denote the set of bi-Lipschitz (onto
their image) maps

γ : Dom (γ)→ X,

with Dom (γ) ⊂ R non-empty and compact.

Theorem 2.7 ([7], Theorem 6.6, Corollary 6.7). Let (X, d,m) be a Lipschitz di�erentiability space and (U, φ)
an n-dimensional chart. Then form-a.e. x ∈ U, there exist γx1 , . . . , γxn ∈ Γ(X) such that:
i) (γxi )−1(x) = 0 is a point of density one of (γxi )−1(U) for each i = 1, . . . , n;
ii) {(φ ◦ γxi )′(0)}i=1,...,n are linearly independent.
Moreover, for any such γxi , for any Lipschitz g : X → R and m-a.e. x ∈ U, the gradient of g at x with respect to
φ and γx1 , . . . , γxn equals Dg(x), that is(

g ◦ γxi
)′ (0) = Dg(x) ·

(
φ ◦ γxi

)′ (0), m − a.e. x ∈ U,

for i = 1, . . . , n.

Hence not only the space of germs of Lipschitz functions has locally �nite dimension but also each Lip-
schitz function is locally described in terms of directional derivative with respect to a family of bi-Lipschitz
curves.

Here it is worth mentioning Keith’s results on coordinate functions: in [19] it is proved that the role of
the coordinate map φ in chart (U, φ) can be played by distance functions from a suitable set. We report here
Theorem 2.7 of [19].
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Theorem 2.8. Let (X, d,m) be a complete and separable metric measure space admitting a p-Poincaré in-
equality with m doubling. Then there exists a measurable di�erentiable structure {(Ui , φi)}i∈N such that each
φi : Ui → Rd(i) is of the form

φi(z) =
(
d(z, x1), . . . , d(z, xd(i))

)
,

for some x1, . . . , xd(i) ∈ X.

For a generalization of the previous result to doubling di�erentiability spaces, see Corollary 6.31 of [35].

2.4 Geodesics in product spaces

If (X, dX) and (Y , dY ) are two metric spaces, we can consider the product distance dXY de�ned by

dXY :=
√
d2
X + d2

Y .

Then (X × Y , dXY ) is again a metric space. We recall an easy lemma on geodesics in product spaces. By a
geodesic in a metric space (X, dX) wemean a map γ : [0, 1]→ X satisfying dX(γs , γt) = |t − s|dX(γ0, γ1) for all
s, t ∈ [0, 1], where we use the usual abbreviation γt = γ(t).

Lemma 2.9. A curve [0, 1] 3 t 7→ (γ1
t , γ2

t ) ∈ (X × Y , dXY ) is a geodesic if and only if γ1 is a geodesic in (X, dX)
and γ2 is a geodesic in (Y , dY ).

Proof. It is immediate that if γ1 and γ2 are geodesics, then also (γ1
t , γ2

t ) is a geodesic. So, let us show the other
direction. We start with the easy inequality: for a, b, c, d positive real numbers,

(a2 + b2)(c2 + d2) ≥ (bd + ac)2. (2.1)

Then let [0, 1] 3 t 7→ (γ1
t , γ2

t ) ∈ X × Y be a geodesic and suppose by contradiction that γ1 is not. For ease of
notation, we can assume that

dX(γ1
−s , γ1

s ) < dX(γ1
0 , γ1

−s) + dX(γ1
0 , γ1

s ), (2.2)

for some s > 0. By the fact that (γ1
t , γ2

t ) is a geodesic we have

d2
X(γ1

−s , γ1
s ) + d2

Y (γ2
−s , γ2

s ) =
(√

d2
X(γ1

−s , γ1
0 ) + d2

Y (γ2
−s , γ2

0 ) +
√
d2
X(γ1

0 , γ1
s ) + d2

Y (γ2
0 , γ2

s )
)2

.

Expanding the squares and using (2.2), we obtain that

d2
Y (γ2

−s , γ2
s ) > d2

Y (γ2
−s , γ2

0 ) + d2
Y (γ2

0 , γ2
s ) + 2

√
d2
X(γ1

−s , γ1
0 ) + d2

Y (γ2
−s , γ2

0 ) ·
√
d2
X(γ1

0 , γ1
s ) + d2

Y (γ2
0 , γ2

s )

− 2dX(γ1
−s , γ1

0 )dX(γ1
0 , γ1

s ).

We can now use the inequality (2.1) to get

d2
Y (γ2

−s , γ2
s ) > d2

Y (γ2
−s , γ2

0 ) + d2
Y (γ2

0 , γ2
s ) + 2dY (γ2

−s , γ2
0 )dY (γ2

0 , γ2
s ),

violating the triangle inequality. The claim follows.

3 Tangent lines
Let us start this section by recalling a result from [33], Theorem 7.10: a more general version of Lebesgue
Di�erentiation Theorem. Here and in the sequel Ld denotes the Lebesgue measure on Rd.
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De�nition 3.1. Fix x ∈ Rd and a sequence of Borel sets {Ei}i∈N ⊂ Rd. We say that {Ei}i∈N shrinks nicely to x
provided there exist ri > 0 and α > 0 such that for each i ∈ N we have

Ei ⊂ Bri (x) and Ld(Ei) ≥ αLd(Bri (x)).

For the nicely shrinking sets we have the following general version of Lebesgue Di�erentiation Theorem.

Theorem 3.2. Let f ∈ L1(Rd ,R) be any function. Associate to each x ∈ Rd a sequence {Ei(x)}i∈N of sets nicely
shrinking to x. Then

f (x) = lim
i→∞

1
Ld(Ei(x))

ˆ
Ei(x)

f (y)dy,

for every Lebesgue point x of f . In particular it holds for Ld-almost every x.

Consider now (X, d) a complete, and separable metric space and note that for the next statement we do
not need to assume (X, d) to be proper.

De�nition 3.3. Letγ : Dom (γ)→ X beany curve.We say thatγ ismetric di�erentiableat t ∈ Dom (γ)provided
the following limit

lim
s,τ→0
nicely

d(γt+s , γt+τ)
|s − τ|

exists for any sequence of s and τ, where with nicely we ask for the interval with boundary formed by t + s
and t + τ to shrink nicely to t. In case the limit exists, we denote it with |dγ|(t).

Remark 3.4. By de�nition, the existence of |dγ| is a priori amore demanding property compared to existence
of metric speed |γ̇|, for its de�nition see [6]. Actually the two notions are di�erent. Consider for instance the
curve γ : [−1, 1] → R2 de�ned by γ(t) := (t, t) for t ≥ 0 and γ(t) := (t, −t) for t ≤ 0. Then the metric speed
always exists and is 1, while |dγ| does not exists for t = 0. The converse trivially holds. For curves with values
in a Euclidean space, at any point of di�erentiability, |dγ|(t0) coincides with the modulus of the derivative.

Remark 3.5. Another notion of di�erentiability for maps with values in metric spaces was introduced by
Kirchheim in [21]: for any g : Rn → (X, d) consider the following quantity

MD(g, x)(u) := lim
r↘0

1
r d(g(x + ru), g(x))

for all x, u ∈ Rn, whenever the limit exists. In Theorem 2 of [21] it is proved that for Lipschitz functions g,MD
exists almost everywhere, with respect to Lebesgue measure, and at almost every point where it exists, it is a
seminorm.

Theorem 3.6 ([21]). Let g : Rn → X be Lipschitz. Then, for almost every x ∈ Rn, MD(g, x)(·) is a seminorm on
Rn and

d(g(z), g(y)) −MD(g, x)(z − y) = o(|z − x| + |z − y|). (3.1)

In the case of Lipschitz curves (n = 1) the quantity MD coincides with the metric speed and at any point
where it exists it is also a seminorm. As the objective of this paper is the study of tangent lines, (3.1) is the
relevant identity. It is straightforward to observe that if (3.1) holds at t ∈ Dom (γ) then t is a point of metric
di�erentiability and |dγ|(t) = MD(γ, t)(1). Also the converse implication holds. We include here a short proof
for the reader’s convenience.

Lemma 3.7. Suppose a Lipschitz curve γ : [−c, c]→ X is metric di�erentiable at 0. Then

d(γt , γs) − |dγ|(0) · |t − s| = o(|t| + |t − s|).
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Proof. Denote the Lipschitz constant of γ by L. Let ϵ > 0 . From the metric di�erentiability there exists rϵ > 0
such that if ϵ|t| < |t − s| < rϵ, we have

d(γt , γs) − |dγ|(0) · |t − s| ≤ ϵ|t − s|.

On the other hand, if 0 < |t − s| < ϵ|t|, we have from the Lipschitz-continuity

d(γt , γs) − |dγ|(0) · |t − s| ≤ 2L|t − s| < 2Lϵ|t|.

The claim follows by combining the estimates.

In this paper we prefer to analyze the properties of |dγ| rather than (3.1).

Taking advantage of Theorem 3.2, it is fairly easy to obtain the almost everywhere existence of |dγ|.

Proposition 3.8. Let γ : Dom (γ) → X be a Lipschitz curve. Then metric di�erentiability holds L1-a.e. in
Dom (γ).

The proof can be obtained already from what was said in Remark 3.5. However, we present here an alter-
native proof obtained following the ideas of the proof of existence of the metric speed for L1-a.e. t ∈ [0, 1],
see [6], Theorem 4.1.6.

Proof. Step 1.
Consider Λ := γ(Dom (γ)). By continuity of γ, the set Λ is compact and we can consider a dense sequence
{xn} ⊂ Λ. We de�ne a sequence of Lipschitz functions as follows:

Dom (γ) 3 t 7→ φn(t) := d(γt , xn).

The Lipschitz constant of φn is bounded from above by the Lipschitz constant of γ. For each n ∈ Nwe denote
with φ̂n a Lipschitz extension of φn. We can assume φ̂n to be de�ned on an interval, say on (a, b), containing
Dom (γ). By Rademacher’s theorem, each φ̂n is di�erentiable L1-a.e. and therefore we can de�ne the follow-
ing map

p(t) := sup
n∈N
| ˙̂φn(t)|,

at least for almost every t ∈ (a, b).

Step 2.
For the rest of the proof we �x t ∈ Dom (γ) which is a point of di�erentiability of all φn and a Lebesgue-point
of p. We also �x two sequences sm , τm → 0 so that the interval (t + sm , t + τm) shrinks nicely to t. For ease of
notation, s = sm , τ = τm with s + sm , t + τm ∈ Dom (γ). Then for any n ∈ N we have

d(γt+s , γt+τ)
|τ − s| ≥ |φn(γt+s) − φn(γt+τ)|

|τ − s| = |φ̂n(γt+s) − φ̂n(γt+τ)|
|τ − s| ,

and therefore
lim inf
s,τ→0

d(γt+s , γt+τ)
|τ − s| ≥ | ˙̂φn(t)|.

We can take the supremum over all n without changing the left hand side of the previous inequality and
obtaining on the right hand side p(t).

Step 3.
Since {xn}n∈N is a dense sequence

d(γt+s , γt+τ) = sup
n∈N
|d(γt+s , xn) − d(xn , γt+τ)|

= sup
n∈N
|φn(t + s) − φn(t + τ)|

≤ sup
n∈N

ˆ
(t+s,t+τ)

| ˙̂φn(σ)|dL1(σ)

≤
ˆ

(t+s,t+τ)
p(σ)dL1(σ).
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By assumption t is a Lebesgue-point of p, then

lim sup
s,τ→0

d(γt+s , γt+τ)
|τ − s| ≤ lim sup

s,τ→0

1
|τ − s|

ˆ t+τ

t+s
p(σ)dL1(σ) = p(t),

where the last identity follows from Theorem 3.2. For L1-a.e. t ∈ Dom (γ):

p(t) ≤ lim inf
s,τ→0
nicely

d(γt+s , γt+τ)
|τ − s| ≤ lim sup

s,τ→0
nicely

d(γt+s , γt+τ)
|τ − s| ≤ p(t),

where the �rst inequality follows from Step 2., and the claim follows.

3.1 Existence of Tangent lines

From Proposition 3.8 one can prove that at each point of metric di�erentiability the blow up of the Lipschitz
curve is a tangent line. Note that we use the properness assumption of the base space (X, d) in the proof.

Lemma 3.9. Let (X, d) be a complete, proper and separable metric space. Fix x̄ ∈ X and assume the existence
of a pointed, proper, complete and separable metric space (X∞, d∞, x̄∞) ∈ Tan(X, d, x̄). Let γ ∈ Γ(X) be such
that

Dom (γ) = [−c, c], γ0 = x̄, |dγ|(0) > 0.

Then (X∞, d∞, x̄∞) contains an isometric copy of R, in brief a line, which is a limit of γ.

Proof. By assumption there exists a sequence of positive real numbers {ri}i∈N with ri → 0 such that(
X, 1
ri
d, x̄

)
→ (X∞, d∞, x̄∞) in the pGH-convergence.

Consider the sequence of approximate isometries fi : X → X∞ associated to the convergence. For any two
real numbers δ, η and i ∈ N su�ciently large it holds:∣∣∣∣ 1

ri
d(γriδ , γriη) − d∞(fi(γriδ), fi(γriη))

∣∣∣∣ ≤ εi .
Thanks to metric di�erentiability

lim
i→∞

d∞(fi(γriδ), fi(γriη)) = |δ − η||dγ|(0).

Since the limit space is proper, using a diagonal argument, we have convergence of {fi(γriδ)}i∈N for all
rational numbers δ. By density there exists a curve z : R→ X∞ such that

d∞(zη , zδ) = |η − δ| · |dγ|(0).

It follows that z(R) is isometric to R.

In Lemma 3.9 we have not assumed any length structure on the metric space (X, d). Hence the assumption
Dom (γ) = [−c, c] could sound a bit restrictive. In what follows we consider γ ∈ Γ(X) with a more general
domain.

Proposition 3.10. Let (X, d) be a complete, proper and separable metric space. Fix x̄ ∈ X and assume the
existence of a pointed, proper, complete and separable metric space (X∞, d∞, x̄∞) ∈ Tan(X, d, x̄). Let γ ∈ Γ(X)
be such that

γ0 = x̄, 0 is a point of density one of Dom (γ), |dγ|(0) > 0.

Then (X∞, d∞, x̄∞) contains a line, which is a limit of γ.
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Proof. Let us consider �xed sequences of positive numbers εi → 0, Ri →∞ and

fi : BXiRi (x̄)→ BX∞Ri (x̄∞), εi − isometry, fi(x̄) = x̄∞,

where BXiRi (x̄) is the ball in (X, d/ri), centered in x̄ and of radius Ri.

Step 1.
Denote with I := Dom (γ) and for any positive r we consider Ir := {x ∈ R : xr ∈ I}. Consider any sequence
ϱi → 0, then for each n de�ne

I(n) :=
⋃
i≥n
Iϱi .

The set ∩n∈NI(n) is formed by all real numbers δ such that there exists a subsequence ϱik so that ϱikδ ∈
Dom (γ) for all k ∈ N. To underline its dependence on {ϱi}i∈N, we also use the following notation

I({ϱi}) :=
⋂
n∈N

I(n).

We observe that for each n ∈ N
L1 (R \ I(n)

)
= 0.

Indeed for any M > 0, and j ∈ N, j ≥ n(
(−M,M) \

⋃
i≥n
Iϱi

)
⊂
(

(−M,M) \ Iϱj
)
.

Then since 0 has density one in I,

lim
i→∞

L1({δ ∈ R : |δ| ≤ ϱiM, δ ∈ ̸ I})
2ϱiM

= 0.

Since
L1({δ ∈ R : |δ| ≤ ϱiM, δ ∈ ̸ I}) = ϱiL1({δ ∈ R : |δ| ≤ M, ϱiδ ∉ I}),

it follows that
lim
j→∞

L1 ((−M,M) \ Iϱj
)

= lim
j→∞

L1(
{
δ ∈ R : |δ| ≤ M, ϱjδ ∈ ̸ I

}
) = 0.

Therefore for any M ∈ R
L1 ((−M,M) \ I(n)

)
= 0,

consequently L1 (R \ I(n)
)

= 0 for all n ∈ N, and �nally also

L1 (R \ I({ϱi})) = 0, (3.2)

holds.

Step 2.
Consider now the sequenceof radii {ri} forwhich thepointedGromov-Hausdor� convergenceholds. Fix also a
sequence ηn → 0, an enumeration of all rational numbers {qm}m∈N, a bijectionN 3 h → (n(h),m(h)) ∈ N×N
and the associated family of open balls in R:

Bh := Bηn(h) (qm(h)).

Then from (3.2), B1 ∩ I({ri}) ≠ ∅. Hence by de�nition of I({ri}), there exists t1 ∈ B1 for which there exists a
subsequence of {ri}i∈N, say {ri1(k)}k∈N so that

t1ri1(k) ∈ I = Dom (γ), ∀ k ∈ N.

In particular we can consider the sequence

{fi1(k)(γt1ri1(k) )}k∈N ⊂ X∞,
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where fi is an εi-isometry from pointed Gromov-Hausdor� convergence. Then since the aforementioned
sequence stays in a bounded neighborhood of x̄∞ and (X∞, d∞) is proper, there exists a subsequence of
{t1ri1(k)}k∈N still denoted by {t1ri1(k)}k∈N, such that

z1 = lim
k→∞

fi1(k)(γt1ri1(k) ),

for some z1 ∈ X∞.
We repeat the construction now with h = 2. Again from (3.2), B2 ∩ I({ri1(k)}) = ̸ ∅ and therefore there exist

t2 ∈ B2 and a subsequence of {ri1(k)}k∈N, call it {ri2(k)}k∈N for which t2ri2(k) ∈ I and

z2 = lim
k→∞

fi2(k)(γt2ri2(k) ),

for some z2 ∈ X∞.
Thanks to (3.2), we can repeat the same argument for any h and with a diagonal argument we infer the

existence of sequences {th}h∈N and {rik}k∈N, such that for any h, for all su�ciently large k we have

rik th ∈ I, zh = lim
k→∞

fik (γth rik ).

Step 3.
For n,m ∈ N we have:

d∞(zn , zm) = lim
k→∞

d∞(fik (γtn rik ), fik (γtm rik )) = lim
k→∞

1
rik

d(γtn rik , γtm rik ).

Since |dγ|(0) > 0, and tnrik and tmrik converge to 0 nicely, we have

d∞(zn , zm) = |tn − tm||dγ|(0).

De�ne therefore the curve:
γ∞ : {th}h∈N → X∞, γ∞th := zh .

Hence we have
d∞(γ∞tn , γ

∞
tm ) = |tn − tm| · |dγ|(0).

Now observe that the set of points {th}h∈N is dense in R, indeed for each h ∈ N the inclusion th ∈ Bh holds.
It follows that γ∞ can be extended by continuity to any s ∈ R. So we have proved the existence of

γ∞ : R→ X∞, d∞(γ∞t , γ∞s ) = |t − s| · |dγ|(0).

The claim follows.

Remark 3.11. The constructions done in the previous proof can be done simultaneously for �nitely many
curves. In particular suppose we have γ1, . . . , γn ∈ Γ(X) such that γ j0 = x̄, 0 is a point of density one of
Dom (γ j) and |dγ j|(0) > 0, for j = 1, . . . , n. Then there exists a dense countable set of times {th} and a
subsequence ik such that:

zjh = lim
k→∞

fik (γ jth rik ), d∞(zjh , z
j
η) = |th − tη| · |dγ j|(0),

for any h, η ∈ N and j = 1, . . . , n.

3.2 Change of base point

It is also possible to extend Proposition 3.10 to any other point of the tangent space that is, if (X∞, d∞, x̄∞)
is a pointed tangent space of (X, d, x̄) and z∞ ∈ X∞, then one can �nd a tangent line passing through z∞,
obtained as the blow-up of the same curve.

This can be obtained using the fact that for almost every x̄ and for every z∞ ∈ X∞ also (X∞, d∞, z∞) is a
pointed tangent space, provided the ambient measure m is doubling. This has been proved by Preiss in [30]
in the Euclidean framework and adapted to the metric space case by Le Donne in [25].
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Theorem 3.12 ([25], Theorem 1.1). Let (X, d,m) be a doubling metric measure space. Then form-a.e. x̄ ∈ X, for
all (X∞, d∞, x̄∞) ∈ Tan(X, d, x̄), and for all z∞ ∈ X∞ we have

(X∞, d∞, z∞) ∈ Tan(X, d, x̄).

Combining Proposition 3.10 and Theorem 3.12 we have

Corollary 3.13. Let (X, d,m) be a doublingmetric measure space, x̄ ∈ X outside the exceptional set of Theorem
3.12 and γ ∈ Γ(X) such that

γ0 = x̄, 0 is a point of density one of Dom (γ), |dγ|(0) > 0.

Then for any (X∞, d∞, x̄∞) ∈ Tan(X, d, x̄) and any z∞ ∈ X∞ there exists a line, which is a limit of γ, passing
through z∞.

4 Tangent lines in Lipschitz di�erentiability spaces
In order to apply metric di�erentiability to Lipschitz di�erentiability spaces, a Borel regularity with respect
to a precise Polish space is needed. We therefore recall a few de�nitions from [7] that will be needed only in
this section.

For a metric space (X, d) de�ne H(X) to be the collection of non-empty compact subsets ofR × X with the
Hausdor� metric, so that H(X) is complete and separable. Moreover identify Γ(X) with its isometric image in
H(X) via the map γ → graph(γ) and consider

A(X) :=
{

(x, γ) ∈ X × Γ(X) : ∃ t ∈ Dom (γ), x = γt
}
.

One can show (Lemma 2.7, [7]) that Γ(X) is a Borel subset of H(X) and A(X) is a Borel subset of X × H(X).
Modifying Lemma 2.8 of [7] we obtain

Lemma 4.1. Let (X, d) be a complete and separable metric space. The map F : A(X)→ R ∪ {∞} de�ned as

F(x, γ) :=
{
|dγ|(γ−1(x)) if it exists
∞ otherwise

(4.1)

is Borel.

Proof. The proof is a slight modi�cation of the proof of Lemma 2.8 of [7].
Let q, δ, ϵ > 0 and α ∈ (0, 1]. The set of (γt0 , γ) ∈ A(X) with∣∣d(γt0+t , γt0+s) − q|t − s|

∣∣ ≤ ϵ|t − s|,
for all t, s with t0 + t, t0 + s ∈ Dom (γ) and |t|, |s| ≤ δ and |t − s| ≥ αmax{t, s}, is closed. After taking suitable
countable intersection and unions as in [7], the set where F exists and belongs to some open subset of R is
Borel and the claim follows.

Now we obtain the following improved version of Theorem 2.7, stated in Section 2.3.

Proposition 4.2. Let (U, φ) be an n-dimensional chart in a Lipschitz di�erentiability space (X, d,m). Then for
almost every x ∈ U, there exists γx1 , . . . , γxn ∈ Γ(X) such that:
i) (γxi )−1(x) = 0 is a point of density one of (γxi )−1(U) for each i = 1, . . . , n;
ii) the metric di�erential in 0 exists and |dγxi |(0) > 0 for each i = 1, . . . , n;
iii) {(φ ◦ γxi )′(0)}i=1,...,n are linearly independent.
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Moreover, for any such γxi , for any Lipschitz g : X → R and almost every x ∈ U, the gradient of g at x with
respect to φ and γx1 , . . . , γxn equals Dg(x), that is(

g ◦ γxi
)′ (0) = Dg(x0) ·

(
φ ◦ γxi

)′ (0),

for i = 1, . . . , n.

Even though the proof of Proposition 4.2 contains no novelty with respect to Theorem 2.7, we included it
here for reader’s convenience.

Proof. By Theorem 6.6 of [7] we have the existence of a countable decomposition U = ∪jUj of U into sets with
n φ-independent Alberti representations (whose de�nition can be found in Section 2 of [7]). We consider for
k = 1, . . . , n the Borel function Fk : A(X)→ R ∪ {∞} de�ned by

Fk(x, γ) :=
{

(φk ◦ γ)′(γ−1(x)) if it exists
∞ otherwise,

where φk is the k-th component of the coordinatemap φ : U → Rn. Moreover, we de�ne F0 to be the function
F considered in Lemma 4.1.

For each k = 0, . . . , n all the assumption of Proposition 2.9 of [7] are satis�ed. The case k = 0 follows
from Proposition 3.8 and Lemma 4.1, while the case k ≥ 1 from Lemma 2.8 of [7]. Then we can repeat the same
argument for the n φ-independent Alberti representations on each Uj.

Hence for each j ∈ N there exists Vj ⊂ Uj with m(Uj \ Vj) = 0 such that for each x ∈ Vj there exist
γx1 , . . . , γxn ∈ Γ(X) such that
i) (γxi )−1(x) = 0 is a point of density one of (γxi )−1(Vj);
ii) the metric di�erential in 0 exists and |dγxi |(0) > 0;
iii) (φ ◦ γxi )′(0) are linearly independent,
for i = 1, . . . , n and for each k = 0, . . . , n the map x 7→ Fk(x, γxi ) is measurable. Since Vj ⊂ U, i) implies that
(γxi )−1(x) = 0 is a point of density one of (γxi )−1(U). This proves the �rst part of the statement. The second part
just follows from Theorem 2.7.

We can now use the previous result to obtain the following

Proposition 4.3. Let (X, d,m) be a Lipschitz di�erentiability space and (U, φ) be an n-dimensional chart.
Then for m-almost every x̄ ∈ U, any element (X∞, d∞, x̄∞) ∈ Tan(X, d, x̄) contains n disjoint (neglecting x̄∞)
isometric copies of R, obtained as limits of Lipschitz curves.

Proof. Take any pointed metric measure space (X∞, d∞, x̄∞) ∈ Tan(X, d, x̄) and the corresponding sequence
of dilations ri > 0, with ri → 0.

The existence of n isometric copies of R follows straightforwardly from De�nition 2.2, Proposition 3.10
and Proposition 4.2. It only remains to prove that the copies are disjoint. To this endwe consider a chart (U, φ)
with x̄ ∈ U and use Remark 3.11: there exists a dense sequence {th}h∈N ⊂ R and a subsequence ik such that:

zjh = lim
k→∞

fik ◦ γ
j
th rik

, d∞(zjh , z
j
η) = |th − tη| · |dγ j|(0),

for j = 1, . . . , n, where fik is the sequence of approximate isometries and γ j are given byProposition 4.2. Recall
that the closure in d∞ of each {zjh : h ∈ N} forms the isometric copies of R in X∞. Via a reparametrization,
without loss of generality, we may also assume that |dγ j|(0) = 1 for all j = 1, . . . , n.
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Now we just observe that for j, l = 1, . . . , n

d∞(zjh , z
l
h) = lim

k→∞
d∞(fik ◦ γ

j
th rik

, fik ◦ γ
l
th rik )

= lim
k→∞

1
rik

d(γ jth rik , γ
l
th rik )

≥ 1
L lim
k→∞

1
rik
|φ ◦ γ jth rik − φ ◦ γ

l
th rik |

≥ thL |
(
φ ◦ γ j

)′
(0) −

(
φ ◦ γ l

)′
(0)|,

where L is the Lipschitz constant of φ. Therefore we have proved that

d∞(zjh , z
l
h) ≥ thL |

(
φ ◦ γ j

)′
(0) −

(
φ ◦ γ l

)′
(0)|, (4.2)

that implies, by linear independence, that d∞(zjh , z
l
h) > 0, for all h ∈ N. Since intersection for di�erent times

is not possible (at time 0 they start from the same point, with the same speed), the claim follows.

We summarize the disjointness property of the isometric embeddings of R.

Corollary 4.4. Let (X, d,m) be a Lipschitz di�erentiability space and (U, φ) be an n-dimensional chart.
Then for m-almost every x̄ ∈ U, there exist v1, . . . , vn ∈ Rn linearly independent such that for any element
(X∞, d∞, x̄∞) ∈ Tan(X, d, x̄) there exist ι1, . . . , ιn : R→ X∞ so that

i) ιj(0) = x̄∞, for any j = 1, . . . , n;

ii) d∞(ιj(t), ιj(s)) = |t − s|, for any j = 1, . . . , n, for all s, t ∈ R;

iii) d∞(ιj(t), ιk(t)) ≥ C|t| · |vj − vk|, for any j, k = 1, . . . , n, for all t ∈ R;

for some positive constant C. Each of the ιi is obtained as the limit of a Lipschitz curve.

If the Lipschitz di�erentiability space is also doubling, one can argue as in Corollary 3.13 to obtain infor-
mation on lines through any point of the tangent space.

Theorem 4.5. Let (X, d,m) be a doubling Lipschitz di�erentiability space and (U, φ) be an n-dimensional
chart. Then for m-almost every x̄ ∈ U, there exist v1, . . . , vn ∈ Rn linearly independent such that for any
element (X∞, d∞, x̄∞) ∈ Tan(X, d, x̄) and for each z ∈ X∞ there exist ιz1, . . . , ιzn : R→ X∞ so that

i) ιzj (0) = z, for any j = 1, . . . , n;

ii) d∞(ιzj (t), ιzj (s)) = |t − s|, for any j = 1, . . . , n, for all s, t ∈ R;

iii) d∞(ιzj (t), ιzk(t)) ≥ C|t| · |vj − vk|, for any j, k = 1, . . . , n, for all t ∈ R;

for some positive constant C = C(z). For each z ∈ X∞, each line ιzi is obtained as the blow-up of a Lipschitz
curve, with the blow-up depending on z.

5 Tangent lines in spaces with splitting tangents
As stated in Theorem 2.6, doubling metric measure spaces supporting a local p-Poincaré inequality are Lip-
schitz di�erentiability spaces and in particular Corollary 4.4 applies. For this class of more regular metric
measure spaces, results on the structure of tangent spaces were already available. For instance in [10], The-
orem 8.5, existence of integral curves for tangent functions was proved. This in turn implies the existence
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of su�ciently many geodesic lines in the tangent space. But no explicit relation between geodesic lines in
the tangent space and curves on the metric measure space was shown to exist. Therefore Corollary 4.4 brings
new information also on the structure of tangent spaces for doublingmetricmeasure space supporting a local
p-Poincaré inequality.

In this last section we show that if n is the dimension of a chart of themeasurable di�erentiable structure
of (X, d,m) seen as a Lipschitz di�erentiability space and if d is the dimension of a Euclidean tangent space
at x, then n ≤ d atm-a.e. point of X.

More precisely, we are interested in a special class of metric measure spaces (X, d,m) having the splitting
of tangents property: if

(X∞, d∞, x̄∞) ∈ Tan(X, d, x̄)

for some x̄ ∈ X and if X∞ contains an isometric copy of R going through x̄∞, then (X∞, d∞) is isometric to

(R × Y , | · | × dY )

where (Y , dY ) is a metric space, and the same property holds for Y. In particular if ι : R → X∞ parametrizes
the isometric copy of R contained in X∞, then there exists an isometry

h : (X∞, d∞)→ (R × Y , | · | × dY ),

such that h ◦ ι(R) ⊂ R × {ȳ}, for some ȳ ∈ Y. The same property has to hold for the metric space (Y , dY ).
We obtain the following result.

Theorem 5.1. Suppose that (X, d,m) is a doubling Lipschitz di�erentiability space with the splitting of tan-
gents property. Let (U, φ) be an n-dimensional chart of (X, d,m). Then for m-a.e. x̄ ∈ U any (X∞, d∞, x̄∞) ∈
Tan(X, d, x̄) is of the form

(Xd∞ ×Rd , dd∞ × | · |,(x̄d∞, 0)),

with d ≥ n.

Compare Theorem 5.1 to the result from [16], that can be rephrased as

Theorem 5.2. Suppose that (X, d,m) is a geodesic doublingmetricmeasure spacewith the splitting of tangents
property. Then atm-a.e. point in X there exists a Euclidean tangent space.

Theorem 5.2 was formulated in [16] for RCD*(K, N) spaces (metric measure spaces with Riemannian Ricci
curvature bounded below by K ∈ R and dimension from above by N), for which any tangent is an RCD*(0, N)
space having the splitting property, as was shown by Gigli [15]. Theorem 5.1 now shows that taking into ac-
count the fact that RCD*(K, N) spaces are doubling and support a local Poincaré inequality [31, 32], we imme-
diately have that any tangent space contains an Rn part with dimension at least the dimension of the chart.
For a comprehensive treatise on the abovementioned family of spaces we refer to [26, 38, 39] for the de�ntion
of CD(K, N) and to [2, 3] for the in�nite dimensional Riemannian version. Finally RCD*(K, N) with N ∈ R has
been introduced independently in [5] and [14].

For RCD*(K, N) spaces more can be said on the relation of the charts and the tangent spaces than the
conclusion of Theorem 5.1. A recent result by Mondino and Naber in [27] states that for (X, d,m) verifying
RCD*(K, N), at m-a.e. x ∈ X there exists a unique tangent space and it is isomorphic, in the sense of metric
measure spaces, to (Rd , |·|,Ld),with d varyingmeasurably in x.Moreover, theyproved the following theorem.

Theorem 5.3. Let (X, d,m)beanRCD*(K, N) space for someK, N ∈ RwithN > 1. Then there exists a countable
collection {Rj}j∈N of m-measurable subsets of X, covering X up to an m-negligible set, such that each Rj is bi-
Lipschitz to a measurable subset of Rkj , for some 1 ≤ kj ≤ N, kj possibly depending on j.

However, if a complete Lipschitz di�erentiability space is bi-Lipschitz embeddable into some Euclidean
space Rk, then at almost every point all the tangent spaces are bi-Lipschitz equivalent to Rn, where n ≤ k is
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the dimension of the chart given by the Lipschitz di�erentiability, see Corollary 8.1 in [12]. Moreover (see [7])
any positive measure subset of a Lipschitz di�erentiability space is itself a Lipschitz di�erentiability space.
Since from inner regularity any measurable subsets of positive measure can be approximated, up to a set
of measure zero, from inside with an increasing family of compact sets (obtaining therefore also the com-
pleteness), combining these two result with Theorem 5.3 we get that for RCD*(K, N) spaces at almost every
point the tangent isRn where the n is the dimension of the chart. Let us note that it is still unknown if in this
context the dimension n of the tangent (and the chart) depends on the point.

We prove Theorem 5.1, which is valid without the bi-Lipschitz embeddability to Rn.

Proof of Theorem 5.1. Step 1.
By Corollary 4.4 any element (X∞, d∞, x̄∞) ∈ Tan(X, d, x̄) has n distinct isometric copies of R:

ιj : R→ X∞, ιj(0) = x̄∞, j = 1, . . . , n,

and each ιj is the blow-up of has a corresponding Lipschitz curve γ j, see Proposition 4.3. By the splitting
property, there exists an isometry

h1 : (X∞, d∞) −→ (X1
∞ ×R, d1

∞ × | · |), h1(x̄∞) = (x̄1
∞, 0),

with h1(ι1(R)) = {(x̄1
∞, t) : t ∈ R}. Since the n geodesics are all disjoint, composing isometries and applying

Lemma 2.9 we deduce the existence of n − 1 geodesics, again denoted with

ιj : (R, | · |)→ (X1
∞, d1

∞), j = 2, . . . , n.

By Lemma 2.9 we can also deduce that ι2(R), . . . , ιn(R) are all disjoint and we can use again the splitting
property to rule out another isometric copy of R.

The same reasoning cannot be repeated to obtain a splitting of the form X∞ ∼ Xn∞×Rn. Itmight be the case
that for some j = 3, . . . , n, ιj(R) is already contained in the Euclidean component of the tangent space, and
therefore the projection in the purely metric component of X∞ could be the constant geodesic, not producing
a new component to rule out via the splitting property.

Step 2.
Consider the n-dimensional chart (U, φ) with φ : U → Rn Lipschitz and any x̄ ∈ U such that Corollary
3.13 applies. Fix also (X∞, d∞, x̄∞) ∈ Tan(X, d, x̄) and uφ, the tangent function of φ at x̄. Note that, possibly
passing to subsequences, uφ is well-de�ned.

Repeating the argument of Step 1. changing the reference point (see [25], Theorem 1.1), we have the fol-
lowing: for some d ∈ N all the possible splittings obtained from the lines of Theorem4.5 give a decomposition
of the following type: X∞ = Xd∞×Rd, where the identity holds in the sense ofmetric spaces, andRd is equipped
with the Euclidean distance.

Step 3.
We now show that d ≥ n. Consider the sequence {ri}i∈N producing (X∞, d∞, x̄∞) as the tangent space and
the 3εi-isometries fi and f −1

i . Let z ∈ X∞ be any point, then by de�nition

uφ(z) = lim
i→∞

φ(f −1
i (z)) − φ(x̄)

ri
.

As observed in the proof of Proposition 4.3, after a suitable reparametrization with unit speed, there exists a
sequence of times {ti}i∈N with ti → 1 as i → ∞ such that d∞(ιj(1), fi(γ jti ri )) → 0, for each j = 1, . . . , n. We
pose z = ιj(1) and observe that

1
ri
|φ(γ jti ri ) − φ(f −1

i (z))| ≤ L 1
ri
d(γ jti ri , f

−1
i (z))

≤ L
(
εi + d∞(fi(γ jti ri ), fi(f

−1
i (z)))

)
≤ L
(
εi + d∞(fi(γ jti ri ), z) + d∞(z, fi(f −1

i (z)))
)

≤ Cεi .
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It therefore follows that

uφ(ιj(1)) = lim
i→∞

φ(γ jti ri ) − φ(x̄)
ri

= (φ ◦ γ j)′(0).

Using a di�erent ti converging to some other real number, it is easy to observe that s 7→ uφ(ιj(s)) is linear and

Span
{
uφ(ι1(1)), . . . , uφ(ιn(1))

}
= Rn .

Thanks to Proposition 3.1 of [12], the same argument works for any z ∈ X∞. We can therefore consider the
isometries ιz1, . . . , ιzn such that ιzj (0) = z for j = 1, . . . , n such that s 7→ uφ(ιzj (s)) is linear, for any z ∈ X∞ and
j = 1, . . . , n.

Finally, we consider ūφ, the restriction of uφ to
{
x̄d∞
}
× Rd → Rn. The claim can now be proven via

showing that ūφ is a quotient map (again we refer to [12] for the relative de�nition). This can be obtained
repeating verbatim the proof of Corollary 5.1 of [12] and using the linearity of s 7→ uφ(ιzj (s)), together with
Theorem 4.5.
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